PAUL SCHERRER INSTITUT

I. Mochi¹, P. Helfenstein¹, R. Rajendran¹, I. Mohacsi¹, Y. Ekinci¹, S. Yoshitake² ¹Paul Scherrer Institut. ²NuFlare Technology, Inc.

Lensless Actinic Inspection of EUV Reticles with RESCAN

EUVL symposium 2016

EUV reticle inspection for N7 and beyond

No actinic patterned reticle inspection platform available for industrial use

Actinic inspection is the most accurate approach for the detection and characterization of defect on EUV reticles.

I. Mochi et al. Proc. Of SPIE Vol. 7636 76361A-1

Introduction to the RESCAN project

- Coherent diffraction
- Defect detection and localization

Experimental results

- Low resolution defect map
- Defect area image reconstruction

Rescan recent upgrades

- A faster detector
- Dedicated beamline

What's next

An actinic inspection platform for the localization and classification of defects on EUV reticles @ SLS synchrotron.

Based on coherent scattering methods

Target specifications:

Defect resolution: 10 nm

Inspection throughput: 7h/reticle

How does RESCAN work?

A TWO-STEP PROCESS

THE DEFECTS ARE DETECTED AND LOCALIZED IN TWO STEPS

1. Fast mask scanning with variable-size probe

Diffraction pattern analysis

2. Aerial image reconstruction of defect zone

CDI reconstruction

Defect identification

Diffraction intensity

- Die to database comparison.
- Die to die comparison.
- High sensitivity.
- Defect multiple detection.
- Fast mask scan.
- On the fly defect detection.

Low-resolution defect map

Defect localization

Aerial image reconstruction with coherent diffraction imaging.

P-MA-06 *Dr. P.Helfenstein* Actinic EUV Mask Metrology with RESCAN using a monochromatic beam.

Defect localization – experimental results

May 2016

June 2016

Reconstruction algorithm optimization

- Artifact reduction.
- Resolution enhancement.
 - Field of view increase.

August 2016

Defect localization – experimental results

100 nm CD lines with programmed and native defects

Defect localization – experimental results

Phase contrast is also useful for defect identification.

SEM image

Looks promising but...

There are two main challenges for successful implementation:

1. Detector dynamic range

2. Full mask inspection time

How much time does it take to scan a 100×100 mm² area with a 30 μ m diameter probe?

•••

We need at least 50% overlapping 100×100 mm² / 0.015×0.015 mm²

44000000 images! Requires ~1800 Hz frame rate

RESCAN dedicated beamline at SLS

Designed and optimized for RESCAN

- Wavelength: 4 -14 nm
- Photon rate: 10¹¹ -10¹² Ph/s (Coherent flux on sample)
- Monochromaticity: 2000

JUNGFRAU 0.2 – Developed at PSI for hard X-Ray applications (FEL)

Dynamic range	>10 ⁶ (20 bit)
Module size	80mm X 40mm
Pixel size	75 microns
No of pixels	512 × 1024
Acquisition Rate	2000 Hz
Pixel Bleeding	No in both directions

P-MA-03 *Dr. R.Rajendran* A high frame-rate pixel detector with extended dynamic range for EUV imaging and mask metrology.

Defect inspection at 500 Hz

Multi-module detector

Jungfrau detector upgrade

- Up to six independent modules. No decrease in acquisition speed.
- EUV optimized. Quantum efficiency increases from 3% to 50%.

Compact EUV Metrology Source "COSAMI"

١	Wavelength	13.5 nm
F	Flux	>100 mW
E	Brilliance	> 10 ⁶ W/(mm ² · strd)
E	Beam energy/beam current	430 MeV/150 mA
F	Pulse structure	~50 ps every 2 ns
I	njection system	Top-up mode
F	ootprint	5m × 12m

The RESCAN platform can be a viable approach to fill the gap in actinic reticle defect inspection.

The key technology is available today.

Additional component development and integration is in progress:

- Fast detector
- Improved algorithms for inspection and image reconstruction
- Compact EUV source

Wir schaffen Wissen – heute für morgen We create knowledge – today for tomorrow

Aknowledgements

- M. Vockenhuber
- M. Kropf
- J. Gabadinho
- A. Mozzanica
- S. Redford
- B. Schmitt

